
Research Article
An Optimized Approach for Industrial IoT Based on
Edge Computing

Hongyang Huang,1 Mohammed Dauwed,2 Morched Derbali,3 Imran Khan ,4 Sun Li,5

Kai Chen,6 and Sangsoon Lim 7

1Graduate School of Business, Segi University, Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
2Department of Medical Instrumentation Techniques Engineering, Dijlah University College, Baghdad, Iraq
3King Abdulaziz University (KAU), Faculty of Computing and Information Technology (FCIT), Jeddah, Saudi Arabia
4Department of Electrical Engineering, University of Engineering & Technology, Peshawar 814, Pakistan
5Advanced Information Research Center of Xi’an Jiaotong University, China
6Huawei Technologies, Stockholm, Sweden
7Department of Computer Engineering, Sungkyul University, Anyang 430010, Republic of Korea

Correspondence should be addressed to Sangsoon Lim; slim@sungkyul.ac.kr

Received 17 May 2022; Accepted 24 June 2022; Published 9 July 2022

Academic Editor: Lisheng Fan

Copyright © 2022 Hongyang Huang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The Internet of Things (IoT) is an information network that connects gadgets and sensors to allow new autonomous tasks. The
Industrial Internet of Things (IIoT) refers to the integration of IoT with industrial applications. Some vital infrastructures, such as
water delivery networks, use IIoT. The scattered topology of IIoT and resource limits of edge computing provide new difficulties to
traditional data storage, transport, and security protection with the rapid expansion of the IIoT. In this paper, a recovery
mechanism to recover the edge network failure is proposed by considering repair cost and computational demands. The NP-
hard problem was divided into interdependent major and minor problems that could be solved in polynomial time by using
the Benders decomposition technique and cutting plane approximation. To ensure the nonincreasing character of the Benders
upper limit, a local branching method was also added to improve the convergence. Simulation results indicated that the
proposed method is superior to the existing method and has better overall performance.

1. Introduction

The Industrial Internet of Things (IIoT) is regarded as an
important driver of the intelligent transformation of the
global industrial system. Relying on hundreds of millions
of seamlessly deployed sensors, collectors, and controllers,
the Industrial Internet of Things can simulate, predict, and
control the full cycle of the manufacturing process [1]. As
the “brain” of the IIoT, the edge computing network pro-
vides more sufficient computing processing capabilities for
wireless acquisition devices, effectively reducing processing
and transmission delays, and is useful for digital twin (DT)
[2], virtual reality (VR), etc. Enterprise high-level applica-
tions have laid a solid foundation [3]. At the same time,

the wired link connection between edge computing nodes
also makes the migration of computing tasks between nodes
smoother, effectively alleviating the problem of unbalanced
space-time allocation of computing resources caused by the
space-time fluctuations of computing demands of the IIoT.

The normal and stable operation of the edge computing
network is the key to the efficient operation of the IIoT.
Once the “brain” is damaged, the IIoT system will lose effec-
tive control over the “limbs” (such as supply chain monitor-
ing, data visualization, and analysis), bringing countless
economic losses, even life-threatening. However, the stability
requirements of edge computing networks face internal and
external challenges. On the one hand, the edge computing
network is coupled with the power grid, control network,

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 3918207, 15 pages
https://doi.org/10.1155/2022/3918207

https://orcid.org/0000-0003-3805-0532
https://orcid.org/0000-0001-9924-7115
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3918207

and other subnetworks in the IIoT, forming a highly vulner-
able interdependent network [4]. Any slight fluctuations in
other subnets may be transmitted to the edge computing
network, causing large-scale system cascading failures. On
the other hand, unpredictable events such as natural disas-
ters and man-made attacks also test the robustness of edge
computing networks at any time [5]. In order to meet the
above challenges, on the one hand, the reliability of the edge
computing network can be strengthened so that it can adap-
tively cope with various network fluctuations and prevent
network failures. On the other hand, and more importantly,
it is necessary to explore the rapid repair mechanism after
the network is damaged, so that the network performance
can be restored to the level close to before the damage as
soon as possible.

Although the design of the repair mechanism is crucial
for the sustainable and stable operation of the network, there
is currently no research literature specifically targeting edge
computing network scenarios in the IIoT. In view of the sim-
ilarity of network topology, network dynamics, and other
characteristics, some existing network repair strategies can
still provide some reference for the design of edge comput-
ing network repair mechanisms in the IIoT. The research
on the existing network repair mechanism mainly focuses
on the rapid repair after the local network is damaged. Ref-
erence [6] constructs the problem of single node or link
damage in the network as an integer linear programming
problem and proposes a data migration-aware repair model,
which achieves an effective balance between service inter-
ruption rate and repair cost. Further, in the literature [7,
8], considering the problem of network connectivity damage
in multinode failure scenarios, it is proposed that users can
be used as transit nodes between disconnected edge nodes
in a device-to-device (D2D) way [7] or mobile devices can
be used. The access node realizes that the data between net-
work nodes can be reached everywhere [8], ensuring the
connectivity of the damaged network. Different from the
above studies, the reference [9] considers the continuous
damage state in the case of network attack, transforms the
network dynamic repair problem into a differential game
theory problem, and enhances the network repair ability
through Nash equilibrium necessary conditions and com-
petitive strategy sets. However, the above-mentioned
research on local network repair often ignores global net-
work nodes, dynamic characteristics between links (such as
flow migration), and practical scene constraints (such as link
space layout without changes); it is difficult to effectively
extend to the large-scale network damage scenarios that
are more likely to occur in the IIoT.

After the network is damaged on a large scale, the initial
available repair resources (such as the number of repair per-
sonnel and the number of replaceable devices) are often lim-
ited. How to effectively balance the limited system repair
resources at the initial stage of repair and the urgent need
for system performance recovery is an urgent problem to
be solved in the current IIoT. Current research mainly
focuses on the analysis of network topology. Reference [10]
believes that large-degree nodes, that is, nodes with large
node degrees, play a more important role in network con-

nectivity and need to be repaired first. Similarly, in [11], con-
sidering that the link is damaged, the link with large
betweenness centrality (BC) should be repaired first. Refer-
ence [12] found through the analysis of actual network data
that weakly connected nodes in the network, that is, nodes
with low degrees of themselves but connected to several
large-degree nodes, play the most critical role in network
connectivity, and their repairs are prioritized. The level
should be higher than the large-degree node. However, the
above schemes based on the growing maximum connected
subgraph of network connectivity are all static network
architecture analysis, ignoring the dynamic characteristics
of the network. The large-scale network repair in the real
environment often forms independent subgraphs first and
then connects multiple subgraphs to form a maximum con-
nected graph [13]. Therefore, in the engineering analysis, it
is necessary to integrate more network equipment details
and actual transmission dynamic analysis [14]. In order to
solve the above problems, a heuristic algorithm that is easier
to solve is proposed in [15]. However, it lacks the macro-
scopic analysis of the network, and the performance variance
of the algorithm is large, so it cannot provide reliable perfor-
mance guarantee. Similarly, both the simulated annealing
algorithm [16] and the genetic algorithm [17] face the same
dilemma as general heuristic algorithms and are easily
trapped in local optimal solutions. Although the hill-
climbing algorithm [18] or the gradient descent algorithm
[19] can easily jump out of the local optimum and greatly
reduce the computational complexity of the problem, the
optimality of the solution cannot be guaranteed. This type
of problem is also known as a network design problem
(NDP). Due to the addition of the dynamic characteristics
of the network, the complexity of the network design prob-
lem is extremely high (at least the NP-complete problem),
and the traditional dynamic programming algorithm will
cause the “dimension disaster” [20]. In reference [21], the
problem of multihop computing task offloading in the
hybrid edge cloud computing environment is studied, and
the offloading method that meets the quality of service
requirements is realized through the game method. In refer-
ence [22], optimization is carried out in terms of time cost
and energy consumption cost to achieve the optimal alloca-
tion of large-scale green energy-saving computing resources.
In reference [23], in order to meet the real-time require-
ments, an intelligent resource planning strategy under the
hybrid computing structure is proposed. In summary, edge
computing can provide more sufficient computing resources
for field devices and reduce network load by deploying at the
network edge closer to field devices, thereby meeting the
requirements of task service quality and reducing system
overhead in different scenarios.

In view of the practical dilemma faced by the current
research, this paper proposes a repair mechanism for dam-
aged edge computing networks in the IIoT scenario. Differ-
ent from the existing literature, this paper deeply excavates
the structural characteristics (topological relationship, link
capacity) and dynamic characteristics (node computing
requirements), and the link priority repair set decision and
network computing migration issues are jointly considered,

2 Wireless Communications and Mobile Computing

in order to achieve an efficient balance between the initial
computing requirements and repair costs of network repair.
The main contributions of this paper are summarized as
follows.

A network repair mechanism is proposed in the case of
large-scale damage to the edge computing network. Com-
bined with the network structure and dynamic characteris-
tics of edge computing, an analysis framework of priority
repair set decision and resource scheduling in the early stage
of network repair is provided.

Based on the Benders decomposition algorithm, the
complex mixed-integer problem is decomposed into two
parts, the main problem and the subproblem, which are eas-
ier to solve. For the subproblems of multivariable groups, by
adding virtual source nodes and destination nodes, the prob-
lem is transformed into a network maximum flow problem
to solve.

A Benders decomposition acceleration algorithm based
on local branching method is designed. The trust region
based on the Hamming distance is used to shrink the search
range of the feasible region and accelerate the convergence
speed of the algorithm.

Simulation results show that the proposed algorithm has
better convergence performance and lower system overhead.
Compared with the existing random repair, maximum con-
nected graph repair, and betweenness centrality sorting
repair and other topology-based repair algorithms, the pro-
posed algorithm has better performance in multiple scenar-
ios and has good scalability and adaptability.

2. System Model

For the edge computing network in the IIoT, consider an
edge computing network with N nodes, which is represented
by the set ∀i ∈N . The edge nodes are connected by wired
links; the link set is represented by E. Since wired links are
usually reliable, and only a small amount of channel coding
complexity is required for computing tasks relative to edge
nodes, the link between two edge nodes can be considered
error-free [24]. The system parameters are shown in
Table 1. It is worth noting that the edge computing network
in the actual IIoT is often a hybrid link transmission net-
work composed of wired links and wireless links. Since there
is almost no damage to the wireless link, and its repair cost is
negligible compared to the wired link, this paper only con-
siders the case where all transmission links are wired links.
Nevertheless, if the deep weakening of the short-term wire-
less channel is not considered, the wireless link in the static
scenario (without considering the spectrum reallocation in
the repair process) can be regarded as a nondestructive link
with constant capacity, and the hybrid link transmission net-
work can be considered equivalent to a pure wired link net-
work, and the proposed algorithm will still be applicable.

The topology of the damaged edge computing network is
shown in Figure 1. In the actual network, because edge
nodes often have complex self-protection mechanisms (such
as overheating protection), they are usually not prone to
damage. Therefore, this paper does not consider node dam-
age and focuses on link damage. In order to simulate the

state of large-scale network failure caused by factors such
as natural disasters, it is assumed that there are qjEj wired
links in the network at the initial moment, where q repre-
sents the percentage of damaged links in all links, and the
set E0 represents the damaged link. The set E1 = E \ E0 rep-
resents the link set that can still work normally. The damage
of the link will cause the balanced computing migration flow
between edge nodes to be broken and even form a comput-
ing island (computing migration cannot be performed, as
shown in node 1 in Figure 1), resulting in a mismatch
between computing requirements and computing capabili-
ties, affecting the network computing performance. Con-
strained by limited repair resources at the initial stage of
network repair (e.g., the number of repair personnel and
replacement equipment inventory), it is impractical to repair
all damaged links at the same time. In order to restore the
network state as soon as possible, it can be distributed
according to the network computing requirements, and
some damaged links can be repaired preferentially, which
is represented by the set Er (Er ⊆ E0). For any link ij ∈ E0,
due to the different degree of damage, the cost cij of mainte-
nance, repair, and replacement is also different.

Considering that the local data computing requirement
of the edge node i ∈N is ri, the actual local computing
amount is pi. It should be noted that ri is the total calculated
arrival amount of the ith edge node in the initial stage of net-
work repair. For a given scenario, ri is a fixed value that does
not change with time and can be estimated more accurately
based on historical computing needs. For any edge node i,
the pi satisfies

0 ≤ pi ≤ �pi,∀i ∈N: ð1Þ

Among them, �pi is the maximum computing power of
node i.

Let the computational cost of migration between node i
and node j ∈Nfig be f ij. If f ij > 0, the data computing task
is migrated from node i to j. If f ij < 0, the data computing
task is migrated from node j to i. Limited by the wired link
capacity �f ij, the actual calculated migration of link ij satisfies

f ij
��� ��� ≤ �f ij,∀ij ∈ E: ð2Þ

Further, for damaged links, the actual computational
migration amount is not only determined by the wired link
capacity, but also affected by the link repair decision, i.e.

f ij
��� ��� ≤ �f ijeij,∀ij ∈ E0, ð3Þ

where

eij ∈ 0, 1f g,∀ij ∈ E0: ð4Þ

Among them, eij = 1 represents the priority to repair
the link ij, that is, ij ∈ Er ; when eij = 0 means that the link
ij is not repaired, it actually calculates the migration

3Wireless Communications and Mobile Computing

amount f ij = 0. In addition, for a single link ij, it can be
known from the migration flow symmetry:

f ij = −f ji,∀ij ∈ E: ð5Þ

When the links in the set Er are repaired, it can be
known from the law of the conservation of computation
of nodes:

Pi + 〠
ij∈E0

f ij + 〠
ij∈E1

f ij + di = ri, i ∈N: ð6Þ

Among them, ri represents the local data computation
requirement of node i; di represents the amount of com-

puting tasks that edge node i has to give up due to data
backlog due to limited computing power.

di ≥ 0,∀i ∈N: ð7Þ

In order to repair as many links as possible, the
amount of data discarded can be reduced, and the system
performance can be improved, but it will cause a large sys-
tem repair overhead. If there are too few repair links, the
system repair overhead will be reduced, but it may cause
the data to be discarded because it cannot be processed
locally, which will damage the network performance. For
quantitative analysis, the network performance in this
paper is measured by the total cost of system data discard-
ing. The greater the amount of data discarded, the higher

Table 1: System parameters.

Parameter Description

q Damaged links as a percentage of all links

E1 The set of all normal links in the edge computing network

E0 The set of all damaged links in the edge computing network

E The set of all links in the edge computing network

N Number of edge computing network nodes

cij Repair cost of link ij

ci The cost per unit of data discarded by node i

pi The amount of local computing data calculation of node i

�pi The maximum computing power of node i

ri The local data computation requirement of node i

di The amount of computational data discarded by node i

f ij Computational migration from node i to node j

�f ij Capacity of link ij

eij Whether to fix the decision variable of link ij

t Number of iterations for Benders decomposition

θt The optimal value of the objective function of the subproblem at iteration t

Δt Left-branch problem threshold at iteration t

Damaged link
Normal link

Edge node 1

Edge node 2

Edge node 3

Edge node 4

f23e23

f24

de 1

Edge node 2

Edg

Edge n

f23ff e23

f24ff

Figure 1: Damaged edge computing network topology.

4 Wireless Communications and Mobile Computing

the total cost of data discarding, and the worse the network
performance. Therefore, in order to balance the repair cost
and network performance at the initial stage of network repair
(total cost of data discarding), the following system cost mini-
mization problem can be constructed

P : min
e;d;f ;p∅ = 〠

ij∈E0
cijeij +〠

i∈N
cidi,

s:t:Eqs: 1ð Þ ~ 7ð Þ:
ð8Þ

Among them, cij represents the repair cost required to
repair the link ij ∈ E0, ci denotes the cost of discarding each
unit of data for node i ∈N. The link repair decision vector e
= ðeij,∀ij ∈ E0Þ, data discarding decision vector d = ðdi,∀i ∈
NÞ, the flow allocation vector f = ð f ij,∀ij ∈ EÞ, and the local
actual computation vector p = ðpi,∀i ∈NÞ. In problem P, the
total system overhead consists of two parts: the total cost of
system repair overhead and data discarding. As mentioned
above, the system repair cost ∑j∈E0cijeij and the total cost of
data discarding∑i∈Ncidi are a pair of contradictory quantities,
an increase in one value will lead to a decrease in the other
value, and minimizing their sum can effectively balance their
effects. When the link repair cost cij is large, it indicates that
the importance of computing data is relatively low, and the
system tends to temporarily repair less damaged links and dis-
card data that cannot be processed. When the cost per unit of
data discarding is large, the system tends to repair more dam-
aged links to reduce the discarding of computing data.

Problem P is a mixed-integer problem, NP-hard prob-
lem, and its data scale is large, and there is no known
polynomial-time algorithm to solve the above problem.
The current methods for solving the above problems can
be divided into three categories: Heuristic algorithm [25],
approximate algorithm [26], and exact algorithm [27]. The
Heuristic algorithms are fast and easy to apply, but they lack
rigorous theoretical proofs, and the results often deviate sig-
nificantly from the optimal solution. Approximate algo-
rithms, such as the slack variable method, have a limited
solution scale, and the solution to the slack problem cannot
accurately describe the optimal solution to the original prob-
lem. Different from the above two methods, the exact algo-
rithm, such as the cut plane algorithm, can well explore
the optimal solution of the problem through the iterative
update of the cut plane and is widely used in the process
of solving mixed-integer problems.

3. Algorithm Design

Benders decomposition algorithm [28] is a classical cutting
plane algorithm, which is widely used to deal with real
mixed-integer programming problems (such as locomotive
scheduling and aviation route planning). This algorithm
does not significantly increase the number of iterations with
the increase of operating variables like the branch and bound
method, nor does it produce dimensional disaster like
dynamic programming, and does not appear heuristic, sim-
ulated annealing, and other algorithms have huge variance

[29]. This section will give an efficient solution to problem
P based on the Benders decomposition algorithm.

3.1. Subproblem Description and Transformation. In the
Benders decomposition algorithm, the original problem
can be decomposed into two parts, the main problem and
the subproblem, and the optimization variables in the main
problem are called complex variables. When the complex
variables are fixed, the remaining optimization problems
(i.e., subproblems) in the original problem become relatively
easy to solve. For the problem P, if the value of the complex
variable etij in the tth iteration process is given, the subprob-
lem can be expressed as

S : min
d;f ;pθ =〠

i∈N
cidi,

s:t:Eqs: 1ð Þ ~ 2ð Þ, 5ð Þ ~ 7ð Þ,
ð9Þ

f ij
��� ��� ≤ �f ije

t
ij,∀ij ∈ E0: ð10Þ

Since the 0-1 variable eij in the original problem P is
decomposed into themain problem, and the optimization var-
iables in the above subproblems are all continuous variables,
this problem can be equivalent to a minimum cost flow prob-
lem. This paper considers a typical environmental monitoring
scenario in the IIoT. Each edge node in the edge network is
responsible for processing the environmental data collected
by wireless sensors. In the environment monitoring scenario,
the computing tasks at each edge node have the same comput-
ing priority [3, 20], that is, the node discards the same cost per
unit of data ðci = cj,∀ij ∈NÞ. Thus, the problem can be further
transformed into the network maximum flow problem [30].
Figure 2 illustrates the above equivalence relationship with
an edge network with four nodes.

In Figure 2, the connection line between nodes 2 and 3 is
the damaged link that needs to be repaired determined in the
iterative process, namely {ij, ij ∈ Er , Er ⊆ E0}. The source
node s and the destination node z are newly added virtual
nodes, the virtual link capacity of the source node s and
the four edge nodes is the maximum computing power of
the four edge nodes, and the virtual link between the four
edge nodes and the destination node z represents the local
data computation requirement of each edge node. The
numerical values on each edge in Figure 2 represent the link
capacity of the link, so that maximizing the total arrival flow
to the destination node z is equivalent to minimizing the
total data discarded. The above transformed maximum flow
problem can be efficiently solved by existing algorithms,
such as the Ford-Fulkerson algorithm [31].

3.2. Cut Plane Generation and Main Problem Construction.
In the Benders decomposition algorithm, the solutions of
the subproblems are substituted into the main problem to
generate linear constraints in the main problem, namely
Benders cuts. Since this paper considers the perfect resource
[32], that is, for any feasible solution to the main problem,
there are always feasible subproblem solutions, and there is
no need to generate feasible cuts; only the optimal cut needs

5Wireless Communications and Mobile Computing

to be constructed. In order to form the optimal cut plane of
Benders, it is necessary to use the complementary relaxation
principle of the dual problem [33]. According to the solution
of the above subproblems, extract the dual variable μtij, ij ∈
E0, corresponding to the constraint in Eq. (3), which can
be repaired system increment of link ij.

Theorem 1. The optimal cut plane of Benders in the tth iter-
ation can be expressed as

η ≥ θt + 〠
ij∈E0

μtij
�f ij eij − etij
� �

: ð11Þ

Among them, η is the upper bound of the optimal solu-
tion of the objective function of the subproblem, and θt is
the optimal value of the objective function obtained in the
tth iteration of the subproblem, that is, the minimum total
cost of data discarding in the tth iteration.

Proof. See Appendix A.1.

Substituting the above Benders optimal cutting plane
into the constraints of solving the main problem, the main
problem can be obtained as

M : min
e;η ∅ = 〠

ij∈E0
cijeij + η:

s:t:Eqs: 4ð Þ, 9ð Þ:
ð12Þ

Among them, ∅ represents the lower bound of the opti-
mal value of the original problem P, because the main prob-
lem only considers part of the constraints and is a relaxation
problem of the original problem.

Different from the subproblem that determines the data
migration, calculation, and discarding of the edge network,
the main problem is responsible for determining the link
set Er that needs to be repaired preferentially in the damaged
link set E0. In the loop iteration process of the main and sub-
problems, the solution of the main problem is carried out

given the amount of data migration, calculation, and dis-
carding. The Er obtained by solving the main problem is in
turn used for further solving of the subproblems, thereby
gradually approximating the optimal data migration, calcu-
lation, discarding, and link repair strategies of the system.

3.3. Iterative Path Repair and Computational Migration
Algorithm Based on Benders Decomposition Theory. The
above main problem is initialized into subproblems, and
the loop iteration starts to find the optimal solution. If the
decision variables of the main problem cannot satisfy all
the constraints in the iterative process, the algorithm is ter-
minated, and the original problem has no solution. Other-
wise, the iterative process continues until the optimal
configuration of the network is found. The specific steps of
the above process are shown in Algorithm 1.

When the algorithm converges, the system will repair the
link whose value is 1 according to the et calculated by the
current iteration. After that, the solution f t of the subprob-
lem is used to determine the amount of data flow migration
between nodes, the actual computing power of each node is
adjusted according to pt , and the data dt that exceeds the
computing power is discarded. It should be noted that in
the main problem, η is a continuous variable and e is a dis-
crete variable, and the problem is still a mixed-integer prob-
lem. Although it can be solved by algorithms such as genetic
ant colony algorithm, the complexity of the algorithm is still
very high due to its large search domain space. In addition,
in the process of each iteration, the introduction of a new
cut plane in the main problem keeps the lower bound ∅ of
the algorithm nondecreasing, but there is no similar mecha-
nism to guarantee the monotonicity of the upper bound ∅
of the algorithm. This nonmonotonic constraint bound
property will further aggravate the computational time over-
head of the above algorithm.

4. Benders Decomposition Acceleration
Algorithm Design

In order to solve the problems existing in the iterative path
repair and computational migration algorithm based on

Node
1

Node
3

Node
2

Node
4

Normal link
Repair link
Virtual link

z
s

p2

p1

p4

p3

r1

r2

r4

r3

f23 f34f12

f13

Figure 2: Subproblem equivalent maximum flow problem.

6 Wireless Communications and Mobile Computing

Benders decomposition theory proposed in Algorithm 1, this
paper further introduces the local branching technique in
the iterative solution process [34]. Its main purpose is to find
a better upper bound of the problem in each iteration pro-
cess, in order to realize the inward clamping of the upper
and lower bounds and reduce the computational complexity
of the main problem.

4.1. Trust Region and Hamming Distance. As mentioned ear-
lier, the Benders decomposition algorithm based on cut
planes is not a stable algorithm, and in the early stages of
the iteration, the solution of the problem fluctuates widely
in different feasible regions, resulting in a slow convergence
rate. In the edge computing scenario in the IIoT considered
in this paper, a large number of optimization variables intro-
duced by large-scale network damage, especially the intro-
duction of the repair link decision vector e with an initial
search space of 2jE0j, will make this convergence speed prob-
lems are further exacerbated. The trust region is an excellent
strategy to address the above-mentioned large-scale fluctua-
tion characteristics. Considering that e in the main problem
is a set of 0-1 variables, the Hamming distance can be used
to limit the distance between the two iterative solutions.

Assuming that ðet , dt , pt , f tÞ is the feasible solution
obtained by the tth iteration of the original problem, the
set of all 0-1 optimization variables with a value of 1 can
be expressed as Et = fetijjetij = 1, etij ∈ E0g, and then the Ham-
ming distance between the (t + 1)th iteration and the tth
iteration is

D et+1ij , etij
� �

= 〠
ij∈Et

1 − et+1ij

� �
+ 〠

ij∈E0\Et

et+1ij : ð13Þ

That is, the number of binary variables e changes in the
(t + 1)th iteration relative to the tth iteration.

To speed up the convergence, the solution space can be
decomposed into two independent trust regions:

D et+1ij , etij
� �

≤ Δt+1, ð14Þ

D et+1ij , etij
� �

≥ Δt+1 + 1: ð15Þ

Among them, Δt+1 represents the size of the trust region
in the t + 1)th iteration, and the selection of its value
depends on the complexity of the main problem and the vol-
atility requirements of the search range. In the above way,
the original problem is naturally divided into two subsolu-
tion spaces, and the local branching method is based on this.
In the local branching method, Equations (14) and (15) are
called the left and right branches, respectively.

4.2. Local Branching. Based on the Hamming distance, the
solution space of the original problem P can be divided into
two closely connected neighborhood spaces according to the
feasible solutions ðet , dt , pt , f tÞ obtained by the tth iteration
of the Benders decomposition. Let ek, k ∈ Kt be the solutions
of all e (including feasible solutions and nonfeasible solu-
tions) calculated by the local branch method iteration during
the tth iteration of Benders decomposition, where the set of
feasible solutions is denoted as Lt (Lt ⊆ Kt). According to the
Hamming distance, the original problem P can be branched
into two independent left and right branch problems. The
left branch problem is

Pk :
min
e;d;f ;p∅ = 〠

ij∈E0
cijeij +〠

i∈N
cidi,

s:t:Eqs: 1ð Þ ~ 7ð Þ,
ð16Þ

D eij, ekij
� �

≥ 1,∀ij ∈ E0, k ∈ Kt , ð17Þ

D eij, elij
� �

≥ Δt + 1,∀ij ∈ E0, l ∈ Lt , ð18Þ

D eij, emij
� �

≤ Δt ,∀ij ∈ E0: ð19Þ

Among them, Equation (17) indicates that the e value that
has been compared before is not repeatedly compared, Equa-
tion (18) indicates that the current left branch should be the
branch of the right branch in the previous branch, and
Equation (19) indicates the left branch restriction, and emij is
the currently obtained optimal solution. Correspondingly,

Define: t = 1, given network parameters fcij, �f ijj∀ij ∈ Eg, fri, �pi, cij∀i ∈Ng.
Initialization: Upper bound ∅ = +∞ and algorithm lower bound ∅ = −∞, iteration accuracy parameter ε.
1: Cycle
2: Solve the main problem M, if the main problem has no solution, terminate the algorithm, the original problem has no solution.
Otherwise, et = ðetij,∀ij ∈ E0Þ and the algorithm lower bound ∅
3: Solve the subproblem S, get dt = ðdti ,∀i ∈NÞ, pt = ðpti ,∀i ∈NÞ, f t = ð f tij,∀ij ∈ EÞ, μt = ðμtij,∀ij ∈ E0Þ and the minimum objective func-

tion value θt

4: Update algorithm upper bound ∅ =min f∅,∑ij∈E0cije
t
ij + θtg

5: t = t + 1
6: Until the algorithm converges, the convergence condition is ð∅−∅Þ/∅ < ε

Algorithm 1: Bender iterative path repair and computational migration.

7Wireless Communications and Mobile Computing

the right branch problem can be obtained as

�Pk :
min
e;d;f ;p∅ = 〠

ij∈E0
cijeij +〠

i∈N
cidi,

s:t:Eqs: 1ð Þ ~ 7ð Þ, 15ð Þ ~ 17ð Þ,
ð20Þ

D eij, emij
� �

≥ Δt + 1,∀ij ∈ E0: ð21Þ

Here, Equation (18) represents the right branch
restriction.

Let ðek+1, dk+1, pk+1, f k+1Þ be the optimal solution of the
left branch problem Pk, and the corresponding objective
function value is ∅k+1, and then there is a local branching
method algorithm flow as shown in Algorithm 2.

The Tmax in the loop condition of Algorithm 2 is to
avoid the situation that the branching problem cannot be
solved because the Hamming distance is set too large during
the calculation process. In a large-scale damaged network,
the solution space of the repair link decision e is very large,
and choosing a smaller trust region size Δt will be more con-
ducive to improving the calculation speed of the left branch
problem.

In the iterative process, the strict upper bound ∅k =
mink∈Ktf∅kg of the original problem can be obtained. At
the same time, since the main difficulty of the original prob-
lem P lies in the acquisition of the lower bound, a series of
optimal cutting planes generated in each iteration process
can also speed up the search speed, so that the Benders
decomposition can simultaneously enhance the optimal
solution of the problem in the iterative process. Search for
upper and lower bounds [35].

4.3. Benders Decomposition Acceleration Algorithm Based on
Local Branching Method. The Benders decomposition algo-
rithm accelerated by the local branching method obtained
by integrating the local branching algorithm into the
Benders decomposition is shown in Algorithm 3.

Similar to Algorithm 1, when Algorithm 3 converges, the
system will determine the set of repair links based on the et
calculated by the current iteration. Then, according to the
calculated values of f t , pt , and dt , the migration, calculation,
and discarding of data in the network are determined. Dif-
ferent from Algorithm 1, the Algorithm 3 ensures the strict
decrease of the upper bound of the original problem P in
the iterative process through the local branching technique.
For large-scale damaged networks, this means that in each
iteration process, the search space of the link repair decision
vector et to be optimized for the main problem M is gradu-
ally reduced, and the search speed of the solution is gradu-
ally accelerated with the increase of the number of iterations.

In the new cuts obtained by each iteration of the above
algorithm, not all cuts need to be added to the main problem
solving process, and only the deepest cuts can be added
(even the cuts with the smallest feasible region). Considering
the convergence requirements of the algorithm and the poor
performance of the initial stage of the Benders decomposi-
tion, it is possible to add trust region constraints only in

the initial iteration stage. When the iterations become stable,
this restriction is lifted.

It is worth noting that in each branch process, the
branch problem P1, P2,⋯ has the same structure as the orig-
inal problem P. Therefore, for each branch problem, Algo-
rithm 1 can be used to solve it. The cut plane obtained
from the previous branching problem can also be used to
solve the subsequent branching problem.

5. Simulation Results

In this section, the proposed iterative path repair and com-
putational migration algorithm based on Benders decompo-
sition theory (hereinafter referred to as Benders
decomposition algorithm) and the iterative path repair and
computational migration algorithm based on Benders
decomposition acceleration theory based on local branching
method (hereinafter referred to as Benders decomposition
acceleration performance of the proposed algorithm) are
simulated and tested. The performance advantages of the
proposed algorithm compared with other benchmark algo-
rithms are verified and analyzed.

5.1. Simulation Parameters and Comparison Algorithms.
This paper considers an edge computing network with N
= 50 nodes, and the maximum computing power �pi of each
node in the initial stage of network repair is independent of
each other and evenly distributed in (10, 25) Gbit. Consider-
ing the matching of computing power and computing
requirements, the computing requirements ri of nodes in
the initial stage of network repair also obey the uniform dis-
tribution on (10, 25) Gbit. Without loss of generality, it is
assumed that the number of wired links in the original
topology of the edge network is jEj = 2N , the network topol-
ogy is the same as the random network [4], and the data
transmission between nodes is reachable everywhere. Con-
sidering the fluctuation range of processing power of com-
puting nodes, the link capacity �f ij obeys a uniform
distribution on (5, 15) Gbit. In order to simulate the large-
scale damage of the network, in the following, unless other-
wise specified, the link damage ratio q = 75%. Assuming that
the cost of repairing each damaged link cij is evenly distrib-
uted in ð1 × 104, 2 × 104Þ pesos, the cost ci of discarding data
due to insufficient computing power is 104 peso/Gbit.

In order to verify the effect of the damaged network
repair mechanism, the proposed algorithm is compared with
the following benchmark algorithms.

(1) Random repair algorithm. The damaged links in the
network are randomly selected for repair, regardless
of the specific topology of the network and the
dynamic characteristics of network computing flow
migration

(2) Maximum connected graph repair algorithm [15].
Repair all damaged links in the maximum connected
graph of the network to ensure that all nodes in the
maximum connected graph of the network can reach
a strong connected state

8 Wireless Communications and Mobile Computing

(3) Betweenness centrality sorting repair algorithm [11].
The topological structure of the edge network before
the damage is analyzed, the betweenness centrality of
each wired link is sorted, and the damaged link with
large betweenness centrality is preferentially
repaired. The number of repaired links is the same
as the proposed algorithm

5.2. Algorithm Convergence. Figure 3 shows the convergence
comparison between the proposed Benders decomposition
algorithm and the Benders decomposition acceleration algo-
rithm. It can be seen from Figure 3 that the two algorithms
can achieve fast iteration within a limited number of times
and have good convergence. It should be noted that the
number of iterations represents the total number of loop
iterations of the main problem and subproblems in Algo-
rithm 1 and Algorithm 3. In each iteration process, the com-
putational complexity of the subproblem is OðjNjjEj2Þ, and
the computational complexity of the main problem is OðjN
jjE0j3Þ, where n is the inner loop iteration for solving the
main problem frequency. Although the Benders decomposi-
tion acceleration algorithm reduces the total number of iter-
ations only once compared to the Benders decomposition

algorithm, its actual computational time complexity is
reduced by ðjNjjEj2 + njE0j3Þ. In a large-scale compromised
network environment, the improvement of the computa-
tional time complexity is still considerable. From the com-
parison of the upper and lower bounds of the algorithm
under the same number of iterations, it can be seen that,
compared with the Benders decomposition algorithm, the
local branch method-assisted Benders decomposition accel-
eration algorithm has a significantly improved convergence
speed due to the introduction of deeper cutting planes and
can be better adapt to the application requirements of
large-scale networks. In addition, the total system cost of
the Benders decomposition algorithm and the Benders
decomposition acceleration algorithm tend to be consistent
after convergence. Therefore, in the following, for the conve-
nience of comparison with the benchmark algorithm, the
Benders decomposition algorithm and the Benders decom-
position acceleration algorithm are collectively referred to
as the proposed algorithm.

5.3. Algorithm Performance. Figures 4 and 5 are the total sys-
tem cost curves of the proposed algorithm, the random
repair algorithm, the maximum connected graph repair

Define: k = 1, let the initial feasible solution of local branch iteration ðek, dk, pk, f kÞ = ðet , dt , pt , f tÞ, and the corresponding objective
function value is ∅k. Given Δt , the maximum allowable computation time Tmax and the iteration accuracy parameter ε
1: Cycle
2: Divide the current branch into left branch Pk and right branch �Pk, calculate ∅k+1 and ðek+1, dk+1, pk+1, f k+1Þ
3: If ∅k+1 <∅k holds
4: Then update Lt = Lt

S fkg, and jump to the right branch
5: Otherwise, ∅k+1 ≥∅k or Pk has no solution
6: Let Δt = Δt + 1, add Dðeij, ekijÞ ≥ 1, ∀ij ∈ E0 to the constraint Eq. (15), and update Kt = Kt S fkg. Recalculate ðek+1, dk+1, pk+1, f k+1Þ
and ∅k+1 of the left branch problem Pk, go back to step 3)
7: k = k + 1
8: Until the algorithm computation time reaches Tmax or meets the accuracy requirement ð∅k −∅k+1Þ/∅k <�ε

Algorithm 2: Local branch scheme.

Define: t = 1, given network parameters fcij, �f ijj∀ij ∈ Eg, fri, �pi, cij∀i ∈Ng.
Initialization: Upper bound ∅ = +∞ and algorithm lower bound ∅ = −∞, iteration accuracy parameter ε
1: Cycle
2: Solve the main problemM, if the problem has no solution, terminate the algorithm, and the original problem has no solution. Oth-
erwise, et = ðetij,∀ij ∈ E0Þ and the algorithm lower bound ∅
3: Solve the subproblem S, and get dt = ðdti ,∀i ∈NÞ, pt = ðpti ,∀i ∈NÞ, f t = ð f tij,∀ij ∈ EÞ, the dual variable μt = ðμtij,∀ij ∈ E0Þ and the min-

imum objective function value θt

4: Update upper bound ∅ =min f∅,∑ij∈E0cije
t
ij + θtg

5: if ð∅−∅Þ/∅ < ε
6: Determine the optimal solution, then terminate the algorithm
7: Otherwise, generate a new Benders optimal cutting plane
8: Run Algorithm 2 to obtain an enhanced upper bound ∅k, and a series of Benders optimal cuts generated by different feasible
solutions
9: t = t + 1
10: Until the algorithm converges

Algorithm 3: Iterative path repair and computational migration.

9Wireless Communications and Mobile Computing

1 2 3 4

Number of iterations

20

40

60

80

100

120

140

160

180

U
pp

er
 a

nd
 lo

w
er

 b
ou

nd
s (

10
,0

00
 p

es
os

)

Upper bound (Benders decomposition)
Lower bound (Benders decomposition)
Upper bound (Benders decomposition acceleration)
Lower bound (Benders decomposition acceleration)

Figure 3: Convergence comparison between the proposed Benders decomposition algorithm and the Benders decomposition acceleration
algorithm.

50 60 70 80 90

% of damaged links

20

40

60

80

100

120

140

160

To
ta

l s
ys

te
m

 c
os

t (
10

,0
00

 p
es

os
)

Machine repair algorithm
Maximum connected graph repair algorithm
Betweenness center Bugan's ordinal repair algorithm
Proposed

Figure 4: Algorithm performance comparison under different network damage levels.

10 Wireless Communications and Mobile Computing

algorithm, and the betweenness centrality sorting repair
algorithm under different network damage degree q and dif-
ferent network scales N , respectively. It can be seen from
Figures 4 and 5 that under different network damage degrees
and network scales, the performance of the proposed algo-
rithm is excellent due to the consideration of the network
dynamic characteristics such as the computing demand
and actual computing power of the nodes in the network
and link capacity limitations on the benchmark algorithm.
It is worth noting that the system overhead performance of
the maximum connected graph repair algorithm is the worst

among all algorithms, even weaker than the random repair
algorithm, which is in good agreement with the state of
network repair in real networks. In the real network, the
repair process always makes the large and small indepen-
dent clusters form in the network first, and at the end of
the repair, the clusters are connected to form the maxi-
mum connected graph [13].

5.4. Multiscenario Deployment. Figures 6 and 7, respectively,
show the number of damaged links repaired by the proposed
algorithm and the amount of data discarded under different

40 45 50 55 60 65 70

Number of networks

40

60

80

100

120

140

160

180

To
ta

l s
ys

te
m

 c
os

t (
10

,0
00

 p
es

os
)

Machine repair algorithm
Maximum connected graph repair algorithm
Betweenness center Bugan's ordinal repair algorithm
Proposed

Figure 5: Algorithm performance comparison under different network scales.

0 0 0.5 1 1.5 2 2.5 3 3.5

Discarded cost per unit of data (10,000/Gbit)

0
2
4
6
8

10
12
14
16
18
20
22
24

N
um

be
r o

f r
ep

ai
re

d
lin

ks

Figure 6: The number of damaged links repaired by the proposed algorithm under different unit data discarding costs.

11Wireless Communications and Mobile Computing

unit data discarding cost scenarios. Considering the double
consideration of the total system overhead of the proposed
algorithm for link repair cost and data discarding, with the
increase of unit data discarding cost ci, the number of repaired
links and the amount of data discarding show an opposite
increase or decrease relationship. Consistent with experience,
as ci increases, i.e., the cost of data discarding increases, the
network tends to repair more links so that the computational
demands can be met. When the value of ci is (1, 1.5) million/
Gbit, the amount of data discarded in Figure 7 begins to drop
significantly, because within this range, the system is just near

the sensitive critical point. Around this value, the system has
the strongest ability to balance the cost of repairing with the
overhead of discarding data. Any small change in the ci value
may bring about a larger change in equilibrium decision-
making. After the ci exceeds 20,000 pesos/Gbit, the marginal
benefit brought by continuing to repair damaged links is
reduced, and the number of network repaired links and the
amount of computing data discarded remain stable. It can be
seen that the proposed algorithm can be well applied to a vari-
ety of different data discarding cost scenarios and has good
scalability and adaptability.

0 1 2 3 4 5 6 7 8

Discarded cost per unit of data (10,000 persos/Gbit)

70

80

90

100

110

120

C
al

cu
la

te
 th

e
am

ou
nt

 o
f d

at
a

di
sc

ar
de

d
(G

bi
t)

Figure 7: The amount of data discarded under different unit data discarding costs of the proposed algorithm.

0

50

100

150

200

250

300

To
ta

l s
ys

te
m

 co
st

(1
0,

00
0

pe
so

s)

Machine repair algorithm
Max. connected graph repair algorithm
Betweenness center Bugan's ordinal repair algorithm
Proposed

Grid networkScale-free networkRandom network

Figure 8: Comparison of algorithms under different network topologies with N = 100:

12 Wireless Communications and Mobile Computing

In order to further analyze the performance of the
algorithm in this paper in different network topology sce-
narios, this paper extends the network form from a single
random network scenario to a grid network and a scale-
free network [36]. Different from the random network,
the degree of each node of the grid network is exactly
the same, and the degree of the nodes of the scale-free
network obeys a power-law distribution. As can be seen
from Figure 8, under the three types of networks, the per-
formance of each algorithm will fluctuate to varying
degrees, but the overall system overhead performance of
the algorithm in this paper is better than the benchmark
algorithm. Thanks to the joint analysis of network topol-
ogy and dynamic features, the algorithm in this paper
has good adaptability to multiple scenarios.

In summary, it can be seen from the simulation results
that the proposed method outperforms the existing methods
in various parameters evaluation and different scenarios.
This provides solid basis that the proposed approach has
practical value in IIoT deployment.

6. Conclusion

Aiming at the vulnerable characteristics of edge computing
networks in the IIoT, this paper proposes a repair mecha-
nism after large-scale damage to the network and gives a
joint optimization method of priority repair link set deci-
sion and computing migration configuration, which effec-
tively alleviates the problem of the initial stage of
network repair; there is a conflict between limited repair
resources and a large amount of data computing require-
ments. Considering the difficulty of solving the original
problem, the Benders decomposition algorithm is used to
transform it into a main problem and subproblems that
are easier to solve. Furthermore, combined with the local
branching method, a Benders decomposition acceleration
algorithm is designed, which effectively improves the con-
vergence speed of the algorithm. The simulation results
show that the proposed algorithm has better system repair
performance compared to the existing topology-based
repair algorithms.

Although for the sake of data fairness, this paper con-
siders that the computing data has the same processing pri-
ority, that is, the cost per unit of data discarded by different
nodes is the same. The subproblem solution can be replaced
with the existing minimum cost flow algorithm (such as
Dinic’s algorithm).

The proposed algorithm is mainly aimed at the situation
where the nodes are connected by wired links. For scenarios
with dynamic wireless links, such as the scenario where the
UAV acts as a mobile edge node, the channel capacity
changes with the location of the UAV, and issues such as
the UAV’s trajectory and wireless spectrum allocation need
to be further considered jointly. This will make the already
complex network repair problem more difficult to solve,
which is beyond the scope of this paper and is reserved for
follow-up research.

Appendix

A.1. Benders Optimal Cut Proof

When etij, ij ∈ E0 is given, from the original problem P, we
can get:

θ etij
� �

= min
d;f ;p

〠
i∈N

cidi 1ð Þ to 3ð Þ, 5ð Þ to 7ð Þj
()

: ðA:1Þ

The objective function of the equivalent dual problem of
the above problem can be written as:

θ etij
� �

= max
α,β,λ,μ

〠
i∈N

αiri + βi�pið Þ + 〠
ij∈E1

λij
�f ij + 〠

ij∈E0
μij

�f ije
t
ij

()

ðA:2Þ

Among them, α = ðαi,∀i ∈NÞ, β = ðβi,∀i ∈NÞ, λ = ðλij,∀i
j ∈ E1Þ optimizes variables (dual variables) for the four sets
of dual problems. In the tth iteration process, it is assumed
that the solution of the above dual variable set is α = ðαti ,∀i
∈NÞ, βt = ðβt

i ,∀i ∈NÞ, λt = ðλtij,∀ij ∈ E1Þ, the optimal solu-

tion of the problem θt = θðetijÞ, and then we have

θ eij
� �

≥〠
i∈N

αti ri + βt
i�pi

� �
+ 〠

iij∈E1
λtij
�f ij + 〠

ij∈E0
μtij

�f ijeij: ðA:3Þ

From linearization operation around etij, ij ∈ E0, we get:

η ≥ θ eij
� �

≥〠
i∈N

αti ri + βt
i�pi

� �
+ 〠

iij∈E1
λtij

�f ij + 〠
ij∈E0

μtij
�f ijeij

+ 〠
ij∈E0

μtij
�f ij eij − etij
� �

= θt + 〠
ij∈E0

μtij
�f ij eij − etij
� �

:

ðA:4Þ

Data Availability

The data used for the findings of this study is available upon
from the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
report regarding the present study.

Authors’ Contributions

Conceptualization was contributed by Hongyang Huang and
Imran Khan; data curation was contributed by M. Dauwed
and M. Derbali; formal analysis was contributed by Sun Li
and Kai Chen; funding acquisition was performed by Sang-
soon Lim; supervision was performed by Imran Khan and
Sangsoon Lim.

13Wireless Communications and Mobile Computing

Acknowledgments

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea Government
(MSIT) (No. 2021R1F1A1063319).

References

[1] J. Lu, L. Chen, J. Xia et al., “Analytical offloading design for
mobile edge computing-based smart internet of vehicle,” EUR-
ASIP Journal on Advances in Signal Processing, vol. 2022, no. 1,
p. 10, 2022.

[2] L. Zhang, W. Zhou, J. Xia et al., “DQN-based mobile edge
computing for smart internet of vehicle,” EURASIP Journal
on Advances in Signal Processing, vol. 3, 10 pages, 2022.

[3] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, and L. Guo, “Com-
putation offloading in mobile edge computing networks: a sur-
vey,” Journal of Network and Computer Applications, vol. 202,
no. 5, article 103366, 2022.

[4] L. Xing, “Cascading failures in internet of things: review and
perspectives on reliability and resilience,” IEEE Internet of
Things Journal, vol. 8, no. 1, pp. 44–64, 2021.

[5] S. Ayoubi, C. Assi, Y. Chen, T. Khalifa, and K. B. Shaban, “Res-
toration methods for cloud multicast virtual networks,” Jour-
nal of Network and Computer Applications, vol. 78, no. 3,
pp. 180–190, 2017.

[6] D. Satria, D. Park, and M. Jo, “Recovery for overloaded mobile
edge computing,” Future Generation Compute Systems, vol. 70,
no. 8, pp. 138–147, 2017.

[7] R. Teng, H. Li, and R. Miura, “Dynamic recovery of wireless
multi-hop infrastructure with the autonomous mobile base
station,” IEEE Access, vol. 4, pp. 627–638, 2016.

[8] P. Li and X. Yang, “On dynamic recovery of cloud storage sys-
tem under advanced persistent threats,” IEEE Access, vol. 7,
pp. 103556–103569, 2019.

[9] G. J. Baxter, G. Timár, and J. F. F. Mendes, “Targeted damage
to interdependent networks,” Physical Review E, vol. 98, no. 3,
pp. 3328–3339, 2018.

[10] C. D. Brummitt, R. M. D’Souza, and E. A. Leicht, “Suppressing
cascades of load in interdependent networks,” Proceedings of
the National Academy of Sciences of the United States of Amer-
ica, vol. 109, no. 12, pp. 680–689, 2012.

[11] F. Morone and H. Makse, “Influence maximization in complex
networks through optimal percolation,” Nature, vol. 524,
no. 7563, pp. 65–68, 2015.

[12] H. Rudnick, S. Mocarquer, E. Andrade, E. Vuchetich, and
P. Miquel, “Disaster management,” IEEE Power and Energy
Magazine, vol. 9, no. 2, pp. 37–45, 2011.

[13] G. Punzo, A. Tewari, E. Butans et al., “Engineering resilient
complex systems: the necessary shift toward complexity sci-
ence,” IEEE Systems Journal, vol. 14, no. 3, pp. 3865–3874,
2020.

[14] J. Moon, M. Yang, and J. Jeong, “A novel approach to the job
shop scheduling problem based on the deep Q-network in a
cooperative multi-access edge computing ecosystems,” Sen-
sors, vol. 21, no. 4, pp. 1–17, 2021.

[15] M. Oudani, “A simulated annealing algorithm for intermodal
transportation on incomplete networks,” Applied Sciences,
vol. 11, no. 10, article 4467, 2021.

[16] A. Hamed, M. Alkinani, and M. Hassan, “A genetic algorithm
to solve capacity assignment problem in a flow network,”

Computers, Materials & Continua, vol. 64, no. 3, pp. 1579–
1586, 2020.

[17] A. Ranjbari, M. Hickman, and Y. Chiu, “A network design
problem formulation and solution procedure for intercity
transit services,” Transportmetrica A: Transport Science,
vol. 16, no. 3, pp. 1156–1175, 2017.

[18] D. Li, Q. Zhang, E. Zio, S. Havlin, and R. Kang, “Network reli-
ability analysis based on percolation theory,” Reliability Engi-
neering & Systems Safety, vol. 142, no. 5, pp. 556–562, 2015.

[19] X. Lyu, C. Ren, W. Ni, H. Tian, and R. P. Liu, “Distributed
optimization of collaborative regions in large-scale inhomoge-
neous fog computing,” IEEE Journal on Selected Areas in Com-
munications, vol. 36, no. 3, pp. 574–586, 2018.

[20] A. Smith, M. Posfai, and M. Rohden, “Competitive percolation
strategies for network recovery,” Scientific Reports, vol. 9, no. 1,
pp. 965–983, 2019.

[21] Z. Hong, W. Chen, W. Huang, S. Guo, and Z. Zheng, “Multi-
Hop cooperative computation offloading for industrial IoT-
edge-cloud computing environments,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 12, pp. 2759–
2774, 2019.

[22] Y. Yu, X. Bu, K. Yang, Z. Wu, and Z. Han, “Green large-scale
fog computing resource allocation using joint benders decom-
position, Dinkelbach algorithm, ADMM, and branch-and-
bound,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4106–4117, 2019.

[23] X. Li, J. Wan, H. Dai, M. Imran, M. Xia, and A. Celesti, “A
hybrid computing solution and resource scheduling strategy
for edge computing in smart manufacturing,” IEEE Transac-
tions on Industrial Informatics, vol. 15, no. 7, pp. 4225–4234,
2019.

[24] Z. H. Abbas, Z. Ali, G. Abbas et al., “Computational offloading
in mobile edge with comprehensive and energy efficient cost
function: a deep learning approach,” Sensors, vol. 21, no. 10,
article 3523, 2021.

[25] M. Avgeris, D. Spatharakis, D. Dechouniotis, A. Leivadeas,
V. Karyotis, and S. Papavassiliou, “ENERDGE: distributed
energy-aware resource allocation at the edge,” Sensors,
vol. 22, no. 2, p. 660, 2022.

[26] G. Codato and M. Fischetti, “Combinatorial Benders’ cuts for
mixed-integer linear programming,” Operations Research,
vol. 54, no. 4, pp. 756–766, 2006.

[27] R. Rahmaniani, T. Crainic, M. Gendreau, and W. Rei, “The
Benders decomposition algorithm: a literature review,” Euro-
pean Journal of Operational Research, vol. 259, no. 3,
pp. 801–817, 2017.

[28] J. Tanveer, A. Haider, R. Ali, and A. Kim, “An overview of
reinforcement learning algorithms for handover management
in 5G ultra-dense small cell networks,” Applied Sciences,
vol. 21, no. 1, pp. 1–14, 2022.

[29] M. F. Pereira, L. V. G. Pinto, S. F. Cunha, and G. Oliveira, “A
decomposition approach to automated generation/transmis-
sion expansion planning,” IEEE Transactions on Power Appa-
ratus and Systems, vol. PAS-104, no. 11, pp. 3074–3083, 1985.

[30] S. Latif, M. Driss, W. Boulila et al., “Deep learning for the
industrial internet of things (IIoT): a comprehensive survey
of techniques, implementation frameworks, potential applica-
tions, and future directions,” Sensors, vol. 21, no. 22, article
7518, 2021.

[31] F. Oliveira, I. Grossmann, and S. Hamacher, “Accelerating
Benders stochastic decomposition for the optimization under

14 Wireless Communications and Mobile Computing

uncertainty of the petroleum product supply chain,” Com-
puters & Operations Research, vol. 49, no. 6, pp. 47–58, 2014.

[32] E. Vega, R. Soto, B. Crawford, J. Peña, and C. Castro, “A
learning-based hybrid framework for dynamic balancing of
exploration-exploitation: combining regression analysis and
metaheuristics,”Mathematics, vol. 9, no. 16, article 1976, 2021.

[33] M. Fischetti and A. Lodi, “Local branching,” Mathematical
Programming, vol. 98, no. 1-3, pp. 23–47, 2003.

[34] T. Santoso, S. Ahmed, M. Goetschalckx, and A. Shapiro, “A
stochastic programming approach for supply chain network
design under uncertainty,” European Journal of Operational
Research, vol. 167, no. 1, pp. 96–115, 2005.

[35] M.-X. Lu, G.-Z. Du, and Z.-F. Li, “Multimode gesture recogni-
tion algorithm based on convolutional long short-term mem-
ory network,” Computational Intelligence and Neuroscience,
vol. 2022, Article ID 4068414, 9 pages, 2022.

[36] A. Yu, N. Wang, and N. Wu, “Scale-free networks: character-
istics of the time-variant robustness and vulnerability,” IEEE
Systems Journal, vol. 3, no. 99, pp. 1–11, 2020.

15Wireless Communications and Mobile Computing

	An Optimized Approach for Industrial IoT Based on Edge Computing
	1. Introduction
	2. System Model
	3. Algorithm Design
	3.1. Subproblem Description and Transformation
	3.2. Cut Plane Generation and Main Problem Construction
	3.3. Iterative Path Repair and Computational Migration Algorithm Based on Benders Decomposition Theory

	4. Benders Decomposition Acceleration Algorithm Design
	4.1. Trust Region and Hamming Distance
	4.2. Local Branching
	4.3. Benders Decomposition Acceleration Algorithm Based on Local Branching Method

	5. Simulation Results
	5.1. Simulation Parameters and Comparison Algorithms
	5.2. Algorithm Convergence
	5.3. Algorithm Performance
	5.4. Multiscenario Deployment

	6. Conclusion
	Appendix
	A.1. Benders Optimal Cut Proof
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

