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Abstract. Oil palm trunks are biomass and it contains starch that can be used to
produce higher value-added glucose for bioethanol, lactic acid, food and bev-
erage productions. An immobilised enzymes hydrolysis that does not require
high temperature, strong acids, and an additional separation process is preferable
for the conversion of starch to glucose as compared to acid hydrolysis involving
hydrochloric acid or sulphuric acid. Notice that a limited study focuses on
utilisation of least-square regression models to predict the glucose concentration
from an immobilised enzymes hydrolysis. Hence, this study developed a least
square model, namely a locally weighted kernel partial least square regression
(LW-KPLSR) model to forecast the glucose concentration produced from the
immobilised enzymes hydrolysis of the oil palm trunks. Its predictive perfor-
mance results were determined, evaluated, and compared with its counterparts.
LW-KPLSR has a more accurate glucose concentrations prediction than others
since its Ea value is 103% to 195% lower.
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1 Introduction

Malaysia is the second-largest palm oil producer in the world after Indonesia [1] with
19.47 million tonnes of palm oil was produced in the year 2020 [2, 3]. This implies the
generation of a large amount of biomass due to replantation and milling activities.
Biomass such as oil palm trunk (OPT) consists of a high amount of starch [4] which
can be converted to glucose. Acid hydrolysis is the commonly used method to convert
starch to glucose with the help of hydrochloric acid and sulphuric acid [5, 6]. However,
an additional separation process is required to purify glucose from the by-products, for
instance, furans, before glucose can be used as the substrate for the fermentation
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process. Enzymatic hydrolysis produces a high yield of glucose from starch at a mild
process condition due to the selectivity of the enzyme. It could be done by adding
a-amylase and glucoamylase into the starchmixture at the same time, to produce glucose.

Attempts have been done to optimise glucose production via enzymatic hydrolysis,
to reduce the operating cost and obtain high quality yield [7–9]. Studies also focus on
modeling, where the enzyme kinetic parameters were calculated [10] to describe the
reaction mechanism [11]. Prediction of yield could be obtained when these
parameters/constants are available. However, these constant values are experiment
dependent and in depth knowledge of biochemistry and microbiology is required. On
another hand, machine learning makes use of massive data to develop models via a
mathematical approach. It recognises the pattern of data distribution and can perform
prediction without explicit, rule-based programming [12].

Machine learning algorithms including partial least square regression (PLSR) based
models that involve mathematical approaches have been widely used in a variety of
applications [13–15]. PLSR based models are famous since they are dimension
reduction methods, simple, and can cope with collinearity between variables [16].
Recently, a PLSR-based model, namely locally weighted Kernel partial least square
regression (LW-KPLSR) has been developed by Yeo, Saptoro and Kumar [17] for
nonlinear processes. Its predictive capability has been investigated using different case
studies from the literature [17] and the experimental data for the bleaching of fabric
cotton. However, it has not been applied to the experimental data for a hydrolysis
process.

Besides, it is found that a minimal study is considering regression models including
PLSR based model to estimate the glucose concentration from the hydrolysis pro-
cesses. Hence, this study aims to develop LW-KPLSR using the experimental data for
immobilized enzymes hydrolysis of the oil palm trunks to predict the glucose con-
centration. Then, the predictive performance of the LW-PLSR was evaluated using the
root mean square error (RMSE), the error of approximation (Ea), and the coefficient of
determination (R2). And these predictive results were also compared with other existing
models such as locally weighted partial least square (LW-PLSR), PLSR, and principal
component regression (PCR). The following sections are the research methodology,
results, and discussions, as well as the conclusions.

2 Research Methodology

In this section, hydrolysis of OPT was described, followed by the descriptions of the
LW-KPLSR model development, the data splitting and parameters setting, as well as
the evaluation of the predictive performance of the regression models. Lastly, the
computer configurations and software used in this study are illustrated.

2.1 Hydrolysis of OPT

Starch was extracted from OPT by heating method [18]. The immobilised enzymes,
namely a-amylase and glucoamylase, were dispersed into the extract after it was cold to
room temperature. The hydrolysis experiment was conducted at varied stirring speeds
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(150 to 300 rpm), the mass of OPT (5 to 20 g), and hydrolysis time (8 to 24 h). The
concentration of glucose was measured by using the One Touch Select Simple Glu-
cometer [19].

2.2 Regression Model Development

Generally, the LW-KPLSR model is an improved model from LW-PLSR [17, 20] and
the LW-PLSR is extended from PLSR [21]. The LW-KPLSR that was developed by
Yeo, Saptoro and Kumar [17] for highly nonlinear processes are utilised in this study.
The similarity measurement used in this LW-KPLSR model is the Euclidean distance-
based similarity index, xn which is obtained based on the distance, dn between a query,
xq, and the historical input data, xn. The xn and a similarity matrix, X can be deter-
mined using Eqs. 1 and 2, respectively [22].

xn ¼ expð� dn
/rn

Þ ð1Þ

dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn � xq
� �T

xn � xq
� �q

ð2Þ

where / is a localisation parameter, rd is the standard deviation of dn (n = 1, 2,
…,N).

In the LW-KPLS model, the input and output variables, x and y for n number of the
sample can be denoted as Eqs. 3 and 4 where M and L are numbers of x and y,
respectively.

xn ¼ xn1; xn2; :::; xnM½ �T ð3Þ

yn ¼ yn1; yn2; :::; ynL½ �T ð4Þ

To obtain the predicted output, ^yq
from the LW-KPLSR model, the following steps

have to be followed and conducted [17].

1. Obtain both Kernel matrices for input variables, V and query, Vq in which the input
and output variables in Eqs. 3 and 4 are mapped into a higher dimensional feature
space utilising the polynomial Kernel function as shown in Eq. 5.

kðx,yÞ ¼ xTyþ 1
� �b ð5Þ

2. Perform mean centering on these obtained Kernel matrices, V and Vq using the
following Eqs. 6 and 7.

~V ¼ I � 1
n
1n1Tn

� �
V I � 1

n
1n1Tn

� �
ð6Þ
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~Vq ¼ ðVq � 1
n
1N21

T
nVÞðI �

1
n
1n1Tn Þ ð7Þ

3. Obtain a dual representation of a scaled version of projection direction, B via a dual
kernel partial least square discrimination using Eq. 8.
B ¼ YY

0
Vb with the normalisation,

b ¼ b
kbk ð8Þ

4. Calculate the re-scaled query, and input variable matrices, Vq, and V using Eqs. 9
and 10.

Xq ¼ VqB ð9Þ

X ¼ VB ð10Þ

5. Figure out the number of latent variables K and set k = 1.
6. Obtain a similarity matrix X using Eqs. 1, 2 and 11.

X ¼ dig x1;x2; :::;xNf g ð11Þ

7. Determine Xk , Yk, and Xq;k using Eqs. 12–16.

Xk ¼ X � 1N X1;X2; :::;XM
� � ð12Þ

Yk ¼ Y � 1N Y1; Y2; :::; YL
� � ð13Þ

Xq;k ¼ Xq � 1N X1;X2; :::;XM
� �T ð14Þ

Xm ¼
PN

n¼1xnXnmPN
n¼1xn

ð15Þ

Yl ¼
PN

n¼1xnYnlPN
n¼1xn

ð16Þ

8. Let ŷq ¼ ½y1; y2; :::; yL�T .
9. Get the kth latent variable of Xk using Eqs. 17 and 18.
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tk ¼ Xkwk ð17Þ

wk ¼ XT
kXYk

kXT
kXYkk

ð18Þ

10. Attain the kth loading vector of Xk and the kth regression coefficient vector using
Eqs. 19 and 20.

pk ¼
XT
kXtk
tTkXtk

ð19Þ

qk ¼
YT
kXtk
tTkXtk

ð20Þ

11. Obtain the kth latent variable of Xq using Eq. 21.

tq;k ¼ XT
q;kwk ð21Þ

12. Substitute ^
yq

with ^
yq

þ tq;jqj where tq;k is the kth latent variable of Xq.

13. If k = K, then complete the prediction using LW-KPLSR model. Otherwise, place
Eqs. 22–24.

Xkþ 1 ¼ Xk � tkp
T
k ð22Þ

Ykþ 1 ¼ Yk � tkq
T
k ð23Þ

Xq;kþ 1 ¼ Xq;k � tq;kpk ð24Þ

14. Let k = k + 1 and go back to Step 9.

2.3 Data Splitting and Parameters Set for the Least Square Regression
Models

In this study, a total number, N of 18 datasets were collected from the immobilised
enzymes hydrolysis of the oil palm trunks. They were saved in a CSV file and were
divided into a ratio of 75:25 where the number of training data, N1 is 14, and the
number of testing data, N2 is 4. These datasets consist of the input or observed vari-
ables, namely stirring speed (rpm), the mass of OPT (g) and hydrolysis time (h).
Meanwhile, the output or target variable is glucose concentration in mmol per litre.
Both training and testing data involving the input and output variables were executed in
MATLAB software using LW-KPLSR, LW-PLSR, PLSR, and PCR models. The
number of latent variables for all these least-square regression models is set as 1.
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Besides, for LW-KPLSR and LW-PLSR models, their u is 0.1 as it gives the best
results [17]. Meanwhile, since LW-KPLSR consists of a kernel function, its kernel
parameter, b has to be tuned. According to Mongillo [23], and Orr [24], the value of b
within the range of 0.01 to 10 provides the lower error. Usually, b equals 1 gives the
lowest predicted error [20], hence b is fixed as 1 in this study. The parameters used in
the least square regression models for this study are tabulated in Table 1.

2.4 Evaluation of the Predictive Performance of the Regression Models

This study utilised RMSE, Ea, and R
2 to evaluate the predictive performance of the LW-

KPLSR, LW-PLSR, PLSR, and PCR models. RMSE is a goodness‐of‐fit indicator that
shows the differences in observed and target values [25, 26]. The lower the RMSE, the
better the predictive performance of the model. RMSE can be calculated using Eq. 25
as shown below [25]:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðyi � yi
^Þ2

N

vuuut
ð25Þ

where yi and ŷi are the actual and predicted output values, respectively.
However, there could be some possible cases that its RMSE for the training dataset

is the lowest and testing datasets have the highest RMSE [20, 27]. Then, it will be a
trouble to evaluate the overall predictive performance of this regression model. Ea that
is shown in Eq. 26 was adopted from Saptoro, Vuthaluru and Tadé [28] and Yeo,
Saptoro, Kumar and Research [20] to address this problem.

Ea ¼ N1

N

� �
RMSE1 þ N2

N

� �
RMSE2 þ RMSE1 � RMSE2j j ð26Þ

Moreover, R2 indicates the comparison between the total of the squared errors to
the total of the squared deviations about its mean. In this study, the R2 that is shown in
Eq. 27 [25] was employed to measure the goodness of fit between the actual and the
predicted values. The closer the R2 to 1 the better the predictive performance of the
model [29].

R2 ¼ 1�
P

i yi � ŷið Þ2P
i yi � �yð Þ2 ð27Þ

Table 1. Parameters used for the LW-KPLSR, LW-PLSR, PLSR, and PCR models.

Parameters N N1 N2 LV u b

Values 18 14 4 1 0.1 1
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Besides, the percentage error (PE) which is displayed in Eq. 28 [25, 30] was also
adopted in this study. PE was used to understand the differences between the RMSE,
Ea, and R2 between two regression models.

PE ¼ byi � yi
yi

				
				� 100% ð28Þ

2.5 Computer Configurations and Software

This study was performed using an Acer Swift 5 Thin and Light Laptop Intel Core i7
11th gen to perform the simulation works. The hardware and software computer
configuration specifications of this laptop are Windows 10 Home 64-bit, up to 4.2 GHz
Intel Core i7, 16.0 GB random-access memory, 512 GB solid-state drive storage, and
MATLAB version R2021a.

3 Results and Discussions

Figure 1 presented the combination effect of stirring speed, the mass of OPT, and
hydrolysis time on glucose production. The size of bubbles indicated the amount of
glucose produced in mmol/L. Big bubbles were observed in Fig. 1(a) at the region
200–250 rpm and >20 g of OPT. This showed that high stirring speed and high amount
of OPT produced were desired as a high amount of glucose was produced. This is
because a high stirring speed increased the mass transfer, while the high mass of OPT
provided more substrate for the enzyme to catalyse the hydrolysis process. In terms of
hydrolysis time, 15–25 h was desired, as illustrated in Fig. 1(b). Under the optimised
condition, the experiment was repeated by increasing the mass of OPT to 40 g. The
result showed that the highest concentration of glucose, 30.1 mmol/L, was produced by
using 30 g of OPT, 225 rpm for 16 h at 60 °C.

(a) (b) 
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0 200 400

M
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s o
f O

PT
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Stirring speed (rpm)

Fig. 1. The effect of stirring speed and (a) mass of OPT (g), (b) hydrolysis time on glucose
production.
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In this study, the experimental data for the immobilised enzymes hydrolysis of the
oil palm trunks were utilised to build LW-KPLSR, LW-PLSR, PLSR, and PCR models.
To evaluate the predictive performance of these regression models, RMSE, and R2 for
both training and testing data as well as Ea were calculated and tabulated in Table 2.
RMSE1 and RMSE2 represent the RMSE for training and testing data, respectively.
Meanwhile, the R1

2 and R2
2 are the R2 for training and testing data, respectively. From

Table 2, it can be seen that LW-KPLSR has the lowest value of Ea while both of its R2

are more than 0.87. From Table 2, notice that the Ea for LW-KPLSR is 195%, 120%,
and 103% lower than LW-PLSR, PLSR, and PCR, respectively.

Although LW-PLSR has slightly better RMSE1 and R1
2 than LW-KPLSR, its

RMSE2 and R2
2 are 160% and 21% higher than LW-KPLSR. It is due to the help of

polynomial Kernel in LW-KPLSR which ables to map the datasets into a higher
dimension to obtain a better prediction [20]. Also, the polynomial Kernel function is
one of the famous Kernel functions in machinery learning applications [31]. On the
other hand, LW-KPLSR and LW-PLSR also provide better results for their training
data as compared to PLSR and PCR in which its RMSE1 is lower and its R1

2 is higher.
These results could due to the presence of a locally weighted model both LW-KPLSR
and LW-PLSR which utilises a weighted Euclidean distance-based approach to choose
the more relevant historical data for better prediction [32]. The absence of polynomial
Kernel function in the LW-PLSR causes its poorer prediction for the testing data than
PLSR and PCR.

Additionally, PLSR produces better predictive results than PCR where its Ea and
RMSE1 are lower and its R1

2 and R2
2 are higher than PCR. This is because PLSR

includes both input and output variables in its model development while PCR is only
involved the input variables [33]. Hence, the PLSR transformation objective can be
done by finding the maxima between the input and output variables to describe better
variance for prediction but PCR can only maximise the block coverage within the input
variables [34, 35]. Nevertheless, the LW-KPLSR model is still the best predictive
model to estimate the glucose concentration for the immobilised enzymes hydrolysis of
the oil palm trunks. As can be seen from Fig. 2(a) and Fig. 2(b), the predicted glucose
concentrations from LW-KPLSR are closer to the actual glucose concentration as
compared to LW-PLSR, PLSR, and PCR. In conclusion, LW-KPLSR is more appro-
priate to be used for the prediction of glucose concentration from the immobilised
enzymes hydrolysis of the oil palm trunks.

Table 2. Predictive performance results from LW-KPLSR, LW-PLSR, PLSR and PCR models.

Models LW-KPLSR LW-PLSR PE (%) PLSR PE (%) PCR PE (%)

RMSE1 2.1555 1.9713 9 3.8111 77 4.4279 48
R1

2 0.9055 0.9256 2 0.6509 28 0.4631 121
RMSE2 2.2505 5.8456 160 2.2891 2 2.1876 101
R2

2 0.8784 0.6932 21 0.8252 6 0.7334 97
Ea 2.2716 6.7065 195 4.9949 120 6.1703 103
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4 Conclusions

The experimental work indicated that stirring speed, hydrolysis time, and mass of OPT
contributed significant impacts to the enzymatic process for glucose production. The
result showed that the highest concentration of glucose, 30.1 mmol/L, was produced by
using 30 g of OPT, 225 rpm for 16 h at 60 °C. In this study, an LW-KPLSR model
was developed to predict the glucose concentration from the immobilised enzymes
hydrolysis of OPT. For the overall predictive performance, the LW-KPLSR model
predicted more accurate glucose concentrations than LW-PLSR, PLSR, and PCR
models since its Ea value is 103% to 195% lower. Moreover, its R2 values are more
than 0.8 and also closer to 1 in which results indicate that the deviation between the
actual and predicted glucose concentrations is not big. Hence, it can be concluded that
LW-KPLSR is suitable to be used to estimate the glucose concentration for this
hydrolysis process. It is suggested to further study more different experimental data of
glucose concentration hydrolysed from oil palm trunks, then more data can be used to
develop a PLSR-based model which can lead to more accurate predictive performance.
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